

802.1X 环境搭建 及话机配置使用说明

版本: <2.0>

发布日期: <2018-7-30>

目录

1	修订	万史	.]
2	802.1	X 介绍	
	2.1	概述	
	2.2	802.1x 认证体系及流程	
3	202 1	x 环境搭建	
3			
	3.1	服务器配置	4
	3.2	修改配置文件	1
	3.3	交换机配置(以深圳锐捷交换机 RG-S2312-P 为例)	
	3.4	802.1x 的三种认证配置	L !
	3.5	证书制作1	L !
4	设备	岩配置 1	13
		EAP-MD5 认证1	
		EAP-TLS 认证	
		PEAP-mschapv2 认证	
_			
5	水皿	过程抓包1	
	5.1	服务器端抓包1	1.
	5.2	设备端抓包1	l:
6	可能達	遇到的问题解决方法	1′

1 修订历史

修订历史:

版本	作者	发布时间	说明
1.0	<刘蕾>	<2014-8-7>	<初始版本>
2.0	<宋蒙蒙>	<2018-05-22>	<更新认证抓包示例,添加设备端配置截图,添加交换 机配置说明,更新文档格式和部分技术相关介绍>

2 802.1X 介绍

2.1 概述

802.1X 协议起源于 802.11 协议,后者是 IEEE 的无线局域网协议,制订 802.1X 协议 的初衷是为了解决无线局域网用户的接入认证问题。IEEE802LAN 协议定义的局域网并不提供接入认证,只要用户能接入局域网控制设备(如 LANS witch),就可以访问局域网中的设备或资源。这在早期企业网有线 LAN 应用环境下并不存在明显的安全隐患。

随着移动办公及驻地网运营等应用的大规模发展,服务提供者需要对用户的接入进行控制和配置。尤其是 WLAN 的应用和 LAN 接入在电信网上大规模开展,有必要对端口加以控制 以实现用户级的接入控制,802.1X 就是 IEEE 为了解决基于端口的接入控制(Port-Based Network Access Control)而定义的一个标准。

2.2 802.1x 认证体系及流程

802.1x 是根据用户 ID 或设备,对网络客户端(或端口)进行鉴权的标准。该流程被称为"端口级别的鉴权"。它采用 RADIUS (远程认证拨号用户服务)方法,并将其划分为三个不同小组:请求方、认证方和授权服务器。

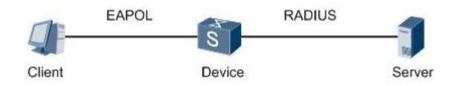


图 1 802.1X 认证的体系结构

802.1x 标准应用于试图连接到端口或其它设备(如 Cisco Catalyst 交换机或 Cisco Aironet 系列接入点)(认证方)的终端设备和用户(请求方)。认证和授权都通过鉴权服务器(如 Cisco Secure ACS)后端通信实现。IEEE 802.1x 提供自动用户身份识别,集中进行鉴权、密钥管理和 LAN 连接配置。 整个 802.1x 的实现设计三个部分,请求者系统、认证系统和认证服务器系统。

认证过程:

- (1) 客户端向接入设备发送一个 EAPoL-Start 报文, 开始 802.1x 认证接入;
- (2) 接入设备向客户端发送 EAP-Request/Identity 报文,要求客户端将用户名送上来:
 - (3) 客户端回应一个 EAP-Response/Identity 给接入设备的请求, 其中包括用户名;
- (4) 接入设备将 EAP-Response/Identity 报文封装到 RADIUS Access-Request 报文中, 发送给认证服务器:
 - (5) 认证服务器产生一个 Challenge, 通过接入设备将 RADIUS Access-Challenge 报

文发送给客户端,其中包含有 EAP-Request/MD5-Challenge;

- (6) 接入设备通过 EAP-Request/MD5-Challenge 发送给客户端,要求客户端进行认证
- (7) 客户端收到 EAP-Request/MD5-Challenge 报文后,将密码和 Challenge 做 MD5 算法后的 Challenged-Pass-word,在 EAP-Response/MD5-Challenge 回应给接入设备
- (8) 接入设备将 Challenge, Challenged Password 和用户名一起送到 RADIUS 服务器,由 RADIUS 服务器进行认证
- (9) RADIUS 服务器根据用户信息,做 MD5 算法,判断用户是否合法,然后回应认证成功/失败报文到接入设备。如果成功,携带协商参数,以及用户的相关业务属性给用户授权。如果认证失败,则流程到此结束:
- (10) 如果认证通过,用户通过标准的 DHCP 协议(可以是 DHCP Relay),通过接入设备获取规划的 IP 地址;
 - (11) 如果认证通过,接入设备发起计费开始请求给 RADIUS 用户认证服务器;
 - (12) RADIUS 用户认证服务器回应计费开始请求报文。用户上线完毕。

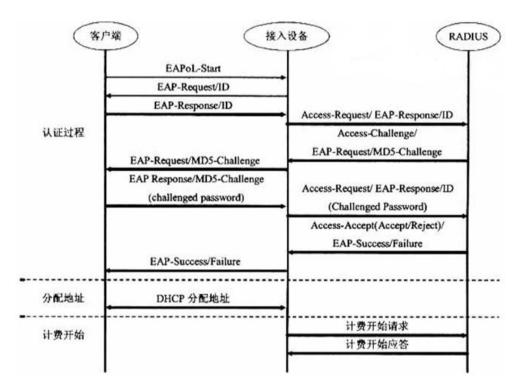


图 2 基于 EAP-MD5 的 802.1X 认证流程

3 802.1x 环境搭建

3.1 服务器配置

1. 安装 FreeRadius

软件下载路径: \\172.16.1.9\share\Testing department\software

安装 FreeRADIUS-server-2. 2. 0-x86. rar(此版本就是将 linux 的 freeRadius 编译成 windows 版本了),或是去官网下载。这里以 FreeRADIUS-server-2. 2. 0-x86. rar 为例。解压 FreeRADIUS-server-2. 2. 0-x86. rar,双击 FreeRADIUS-server-2. 2. 0-x86. exe,安装程序,这里按默认路径安装,如图:

图 3

图 4

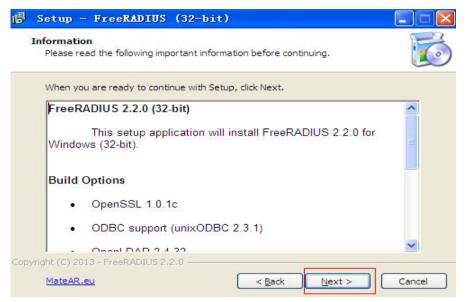


图 5

图 6

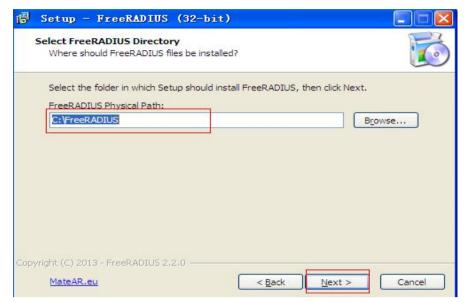


图 7

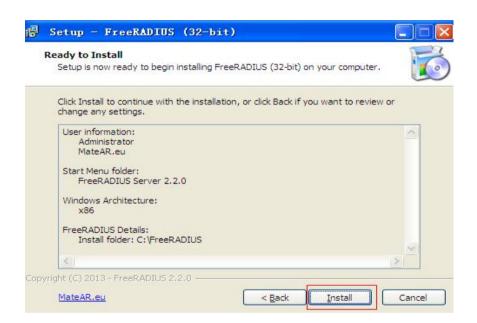


图 8

图 9

2. 测试软件

点击开始-所有程序-FreeRADIUS Server 2.2.0-Start RADIUS Server, 如图:

图 10

成功后,显示如下信息:

```
Listening on authentication address * port 1812
Listening on accounting address * port 1813
Listening on authentication address 127.0.0.1 port 18120 as server inner-tunnel
Listening on proxy address * port 1814
Ready to process requests.
```

3.2 修改配置文件

1. 安装完成后,进入 C:\FreeRADIUS\etc\raddb 目录,修改 clients.conf:

```
client_server localhost {
    ipaddr = 127.0.0.1 #127.0.0.1 是服务器保留测试地址
    port = 1812 #服务器默认的认证端口
    type = "auth" #认证类型为 auth
    secret = "testing123" #共享秘钥
```

```
response window = 20
                                             #响应端口
      max outstanding = 65536
                                                 #是否进行消息认证
      require message authenticator = yes
      zombie period = 40
                                                 #服务器状态检查
      status check = "status-server"
      ping interval = 30
      check interval = 30
                                              #检查时间间隔
      num answers to alive = 3
      num pings to alive = 3
      revive interval = 120
                                               #恢复时间间隔
                                               #状态检查超时时间
      status check timeout = 4
 coa {
      irt = 2
                                              #初始重传时间
      mrt = 16
                                             #最大重传时间
      mrc = 5
                                             #最大重传次数
      mrd = 30
                                             #最大重传持续时间
}
# 这里的 client 是指交换机
client 10.1.1.2/8 {
                             #服务器地址/子网掩码为 255.0.0.0
   require_message_authenticator = yes #是否认证信息
                          # NAS 与 radius 间的通信密码 key
            = qq
   secret
                           # 域名,可以随便写,这里的 rui jie 是我们要认证
   shortname
             = ruijie
交换机的型号
```

2. 进入 C:\FreeRADIUS\etc\raddb 目录,打开 users,在里面设置用户名、密码(也可以使用默认的),如图:

所以设备的802.1x 认证的用户名: qq, 密码是: qq。相应的服务器端也要配置为此用户名及密码。

注:如果话机认证不能通过,将 testing Cleartext-Password := "testing"加在第一行,用此用户名密码进行认证.

3. 运行服务器,看是否正常,正常会显示如下信息

图 11

3.3 交换机配置

3.3.1 以深圳锐捷交换机 RG-S2312-P 为例

- 1. 认证服务器必须能与 pc 互通,目前没有找到修改交换机 IP 的方法,所以只能修改自己 pc 网段和交换机 IP 在同一网段即可。交换机 IP 地址: 10.1.1.1./8
- 2. 进入交换机 web 配置界面(http://10.1.1.1),配置 802.1x 认证。也可以使用命令来配置(具体参考交换机的命令配置文档)。
- 3. 配置交换机 802.1x 功能,注意交换机与认证服务器通信密钥,认证用户名/密码必须配置正确。通信秘钥、认证名、密码等在本文 3.2 中已作说明。

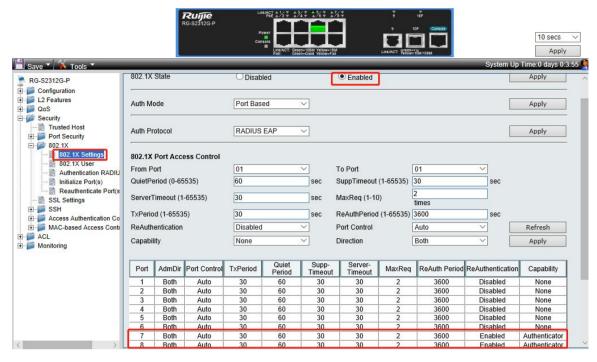


图 12

图 13

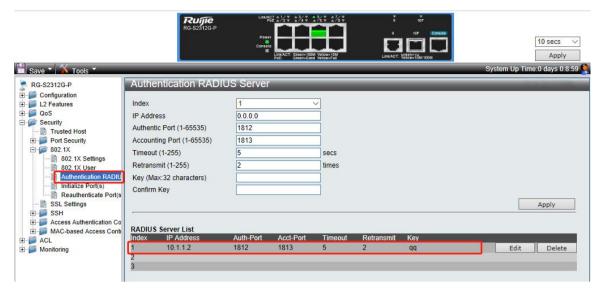


图 14

4. 认证服务器连接在绿色标示对应的对口,认证客户端连接在红线标识的端口即可。

Port	AdmDir	Port Control	TxPeriod	Quiet Period	Supp- Timeout	Server- Timeout	MaxReq	ReAuth Period	ReAuthentication	Capability
1	Both	Auto	30	60	30	30	2	3600	Enabled	Authenticator
2	Both	Auto	30	60	30	30	2	3600	Enabled	Authenticator
3	Both	Auto	30	60	30	30	2	3600	Enabled	Authenticator
4	Both	Auto	30	60	30	30	2	3600	Enabled	None
5	Both	Auto	30	60	30	30	2	3600	Disabled	None
6	Both	Auto	30	60	30	30	2	3600	Disabled	None
7	Both	Auto	30	60	30	30	2	3600	Disabled	None
8	Both	Auto	30	60	30	30	2	3600	Disabled	None
9	Both	Auto	30	60	30	30	2	3600	Disabled	None
10	Both	Auto	30	60	30	30	2	3600	Disabled	None

图 15

注:认证服务器端抓包过滤 EAP 看到服务器与认证交换机之间的数据往来,所以要使用借助 hub 来抓取设备认证过程的数据包。

3.3.2 以北京思科 2560 交换机为例 (新添加)

PC 通过 SecureCRT 连接 console 口 目前设置 24 口为验证口

Dot1x (802.1x) configuration method for switches.

Command	Purpose
configure term	进入全局配置模式 Enter global configuration mode

a	aa new-mode	启用 AAA. Enable AAA.
ti	aa authentica ion dot1x def ult group radi	创建一个缺省 IEEE 802.1x 认证方法列表 Create a list of default IEEE 802.1x authentication methods
	ot1x system- uth-control	启用 IEEE 802.1x 认证的全局配置 Enable global configuration for IEEE 802.1x certification
o fa	aa authorizati on network{de ault} group ra lius	(可选) 启用 VLAN 分配特性时需要此项配置 This configuration is required when enabling the VLAN allocation feature
h	adius-server ost ip-address auth-port 18	(可选) 指定 radius 认证服务器的地址 默认 udp 认证端口是 1812,范围 0~65536. Optionally specify the address of the radius authentication ser ver, The default udp authentication port is 1812, with a range of 0~

	65536.
radius-server key string	(可选)指定交换机与认证服务器通讯所需的密钥 Optionally, specify the key required for the switch to communicate with the authentication server
Interface interf ace-id	进入需要启用 802.1x 认证的端口 Enter the port where 802.1x authentication is required
switchport mo de access	(可选) 设置端口的访问模式(如果 step6、7 已配置了 radius 服务器) (optional) set the access mode of the port (if step6, 7 has configured the radius server)
authentication port-control a uto or dot1x port-con trol auto	启用此端口的 IEEE 802.1x 认证 Enable IEEE 802.1x certification for this port
dot1x host-mo de multi-host	host-mode 是针对在端口下通过 hub 有多台机器上网的问题设置的。默认的 single-host 只允许一台机器能够使用该端口Host-mode is set for problems where multiple machines are conn

	ected via the hub under the port. The default single-host is only a llowed a machine can use this port
dot1x max-rea uth-req count	(可选)设置此端口在重启认证过程之前向客户端发送 EAP-request/identity 帧的次数,范围是 1~10,默认是 2; 建议为 10。 (Optional) set the number of times this port sends eap-request /identity frames to the client before restarting the authenticati on process in a range of 1 to 10, with the default of 2. The recommended number is 10
end	返回特权模式 Return privilege mode
show authenti cation or show dot1x	验证你的 802.1x 配置. Verify your 802.1x configuration.
copy running- config startup- config	(可选) 保存配置。建议在完全确定你的配置的情况下再保存你的配置. (Optional) save the configuration. It is recommended that you save your configuration after you are completely sure of it.

3.4 802.1x 的三种认证配置

1. EAP-MD5 认证

2. EAP-TLS 认证

将 default_eap_type = md5 改为 default_eap_type = tls

3. PEAP-mschapv2 认证

将 default_eap_type = md5 改为 default_eap_type = peap

3.5 证书制作

参考 openvpn 文档,将 openvpn 制作的 4个证书做成 802.1x 的认证证书:

- 1. client. pem: 将 client. key 中的全部内容 copy 到 client. crt 文件的最后
- 2. RootCA. pem: 将 ca. crt 改名为 RootCA. pem
- 3. server.pem: 将 server.crt 改名为 server.pem
- 4. server-key. pem: 将 server. key 改名为 server-key. pem

制作的 4 个证书放在 FreeRADIUS\etc\raddb\certs 下

4 设备端配置

本文以 X6 为准。

4.1 EAP-MD5 认证

图 16

4.2 EAP-TLS 认证

图 17

4.3 PEAP-mschapv2 认证

图 18

注意:

认证需要上传的两个证书,请按照如下所示格式来命名证书文件。

client.pem-DOT1X_CLIENT-	2016/9/23 14:31	PEM-DOT1X_CLIENT	5 KB
RootCA.pem-DOT1X_CA-	2016/9/23 14:30	PEM-DOT1X_CA- 文件	2 KB

- 注: 1. PEAP-mschapv2 认证只需要上传 RootCA. pem (RootCA. pem-DOT1X_CA-) 这一个证书即可, tls 认证需要同时上传 RootCA. pem-DOT1X_CA-和 client. pem-DOT1X_CLIENT-这2个证书。
- 2. 测 802. 1x 时,话机 ip 为静态,需要用到证书的,话机时间要确保在证书使用范围内,时间最好设置为 20140801. (date -s "2014-08-01 16:18"))

5 认证过程抓包

5.1 服务器端抓包

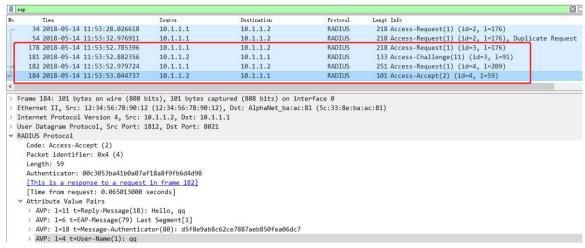


图 19

可以看到 user-name(1): qq 字段。

5.2 设备端抓包

1. EAP-MD5 认证

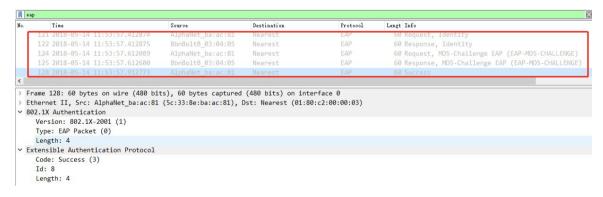


图 20

2. EAP-TLS 认证

	Tine	Source	Destination	Protocol	Length Info	
	3228 2018-05-14	AlphaNet_b	Nearest	EAP	60 Req	est, Identity
	3229 2018-05-14	BbnBoltB_0	Nearest	EAP	60 Res	onse, Identity
1	3230 2018-05-14	AlphaNet_b	Nearest	EAP	60 Reg	est, TLS EAP (EAP-TLS)
1	3231 2018-05-14	BbnBoltB_0	Nearest	TLSv1	120 Cli	ent Hello
1	3232 2018-05-14	AlphaNet_b	Nearest	TLSv1	1042 Ser	rer Hello, Certificate, Server Key Exchange, Certificate Request, Server Hello Done
1	3233 2018-05-14	BbnBoltB_0	Nearest	EAP	60 Res	onse, TLS EAP (EAP-TLS)
1	3236 2018-05-14	AlphaNet_b	Nearest	TLSv1	1042 Ser	rer Hello, Certificate, Server Key Exchange, Certificate Request, Server Hello Done
1	3237 2018-05-14	BbnBoltB 0	Nearest	EAP	60 Res	onse, TLS EAP (EAP-TLS)
1	3239 2018-05-14	AlphaNet b	Nearest	TLSv1	617 Ser	rer Hello, Certificate, Server Key Exchange, Certificate Request, Server Hello Done
1	3240 2018-05-14	BbnBoltB 0	Nearest	TLSv1	1426 Cer	rificate, Client Key Exchange, Certificate Verify, Change Cipher Spec, Encrypted Handshake
1	3241 2018-05-14	AlphaNet b	Nearest	EAP	60 Reg	mest, TLS EAP (EAP-TLS)
	3242 2018-05-14	BbnBoltB 0	Nearest	TLSv1	924 Cer	ificate, Client Key Exchange, Certificate Verify, Change Cipher Spec, Encrypted Handshake
	3243 2018-05-14	AlphaNet b	Nearest	TLSv1	87 Chai	ige Cipher Spec, Encrypted Handshake Message
	3244 2018-05-14	BbnBoltB 0	Nearest	EAP	60 Resi	ionse, TLS EAP (EAP-TLS)
4	3246 2018-05-14	AlphaNet b	Nearest	FAP	60 Suc	

图 21

3. PEAP-mschapv2 认证

Lengt Info	Protocol	Destination	Source	Time
60 Request, Identity	EAP	Nearest	AlphaNet_ba:ac:81	2999 2018-05-14 14:08:37.977783
60 Response, Identity	EAP	Nearest	BbnBoltB_03:04:05	3000 2018-05-14 14:08:37.978464
60 Request, Protected EAP (EAP-PEAP)	EAP	Nearest	AlphaNet_ba:ac:81	3002 2018-05-14 14:08:38.137068
120 Client Hello	TLSv1	Nearest	BbnBoltB_03:04:05	3004 2018-05-14 14:08:38.146463
1042 Server Hello, Certificate, Server Key Exchange, Server Hello Do	TLSv1	Nearest	AlphaNet_ba:ac:81	3005 2018-05-14 14:08:38.437874
60 Response, Protected EAP (EAP-PEAP)	EAP	Nearest	BbnBoltB_03:04:05	3006 2018-05-14 14:08:38.438558
1038 Server Hello, Certificate, Server Key Exchange, Server Hello Do	TLSv1	Nearest	AlphaNet_ba:ac:81	3007 2018-05-14 14:08:38.742164
60 Response, Protected EAP (EAP-PEAP)	EAP	Nearest	BbnBoltB_03:04:05	3008 2018-05-14 14:08:38.742818
448 Server Hello, Certificate, Server Key Exchange, Server Hello Do	TLSv1	Nearest	AlphaNet_ba:ac:81	3009 2018-05-14 14:08:38.967748
222 Client Key Exchange, Change Cipher Spec, Encrypted Handshake Me	TL5v1	Nearest	BbnBoltB_03:04:05	3011 2018-05-14 14:08:39.239028
83 Change Cipher Spec, Encrypted Handshake Message	TLSv1	Nearest	AlphaNet_ba:ac:81	3012 2018-05-14 14:08:39.639538
60 Response, Protected EAP (EAP-PEAP)	EAP	Nearest	BbnBoltB 03:04:05	3013 2018-05-14 14:08:39.641606
61 Application Data	TLSv1	Nearest	AlphaNet ba:ac:81	3014 2018-05-14 14:08:39.937022
98 Application Data, Application Data	TLSv1	Nearest	BbnBoltB 03:04:05	3015 2018-05-14 14:08:39.938376
61 Application Data	TLSv1	Nearest	AlphaNet ba:ac:81	3017 2018-05-14 14:08:40.237092
98 Application Data, Application Data	TLSv1	Nearest	BbnBoltB 03:04:05	3018 2018-05-14 14:08:40.238274
77 Application Data	TLSv1	Nearest	AlphaNet ba:ac:81	3019 2018-05-14 14:08:40.537281
146 Application Data, Application Data	TLSv1	Nearest	BbnBoltB 03:04:05	3022 2018-05-14 14:08:40.551899
109 Application Data	TLSv1	Nearest	AlphaNet ba:ac:81	3026 2018-05-14 14:08:40.837108
98 Application Data, Application Data	TLSv1	Nearest	BbnBoltB 03:04:05	3027 2018-05-14 14:08:40.838514
61 Application Data	TLSv1	Nearest	AlphaNet ba:ac:81	3028 2018-05-14 14:08:41.137035
98 Application Data, Application Data	TLSv1	Nearest	BbnBoltB 03:04:05	3029 2018-05-14 14:08:41.137912
60 Success	EAP	Nearest	AlphaNet ba:ac:81	3033 2018-05-14 14:08:41.437214

图 22

6 可能遇到的问题解决方法

1.

```
>
../etc/raddb/clients.conf[176]: Failed to look up hostname ::1: ip_hton: 不知道
这样的主机。
C:\FreeRADIUS\sbin>
```

找到对应目录下的 clients.conf 文件,将下面几行屏蔽

```
175 # IPv6 Client
176 #client ::1 {
177 # secret = testing123
178 # shortname = localhost
179 #}
180
```

2.

```
port = 0
Failed opening authentication address 0:0:0:0:0:0:0:0:0 port 1812: Unknown error
..\etc\raddb/radiusd.conf[312]: Error binding to port for 0:0:0:0:0:0:0:0 port 1
812
C:\FreeRADIUS\sbin>
```

找到对应目录下的 radiusd.conf 文件,将下面几行屏蔽

```
312 #listen {
313 # ipv6addr = ::
314 # port = 0
315 # type = auth
316 #
```

3.

```
Failed opening accounting address 0:0:0:0:0:0:0:0 port 1813: Unknown error
..\etc\raddb/radiusd.conf[330]: Error binding to port for 0:0:0:0:0:0:0:0 port 1
813

C:\FreeRADIUS\sbin>
```

找到对应目录下的 radiusd.conf 文件,将下面几行屏蔽

```
330 #listen {
331 # ipv6addr = ::
332 # port = 0
333 # type = acct
334 #}
```